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Abstract—Boundary-layer solutions are given for free convection in laminar three-dimensional systems,

driven by a temperature-dependent or composition-dependent density. Effects of rapid mass transfer and

centrifugal forces are determined, and the results of Acrivos [1] for power-law fluids are generalized. The

results hold asymptotically for large Prandtl or Schmidt number; they are strikingly confirmed by previous
measurements of diffusion-limited electrochemical reactions.

INTRODUCTION

THE EFFECTS of surface shape and orientation
on free convection are important in heat transfer,
drying, and electrode processes. These effects
are difficult to calculate exactly; however, at
moderately large Prandtl or Schmidt numbers,
they are tractable by boundary-layer methods.
Acrivos [1] used this approach to calculate free-
convection heat transfer in two-dimensional and
axially symmetric geometries. Here this
approach is generalized to three-dimensional
systems, centrifugal fields and high mass-transfer
rates.

NOMENCLATURE
For each physical quantity, the dimensions
are given in terms of mass (m), length (1), time (¢)
and temperature (7).

A, area of transfer surface [/*];

a, linear acceleration of reference
point [It™2];

B, vector stream function in equation

(19) [dimensionless] ;

¢, mean heat capacity of inner layer
(2T 1]

D, diameter of cylinder or sphere [I] ;

D aps mean binary diffusivity of inner

layer [I%t™1];
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vertical drag force on solid; posi-
tive upward [ml ¢t~ 2];

reduced stream function, defined
in equation (31) [dimensionless] ;
derivatives of f with respect to
n [dimensioniess] :

interfacial value of d%f/dy? [di-
mensionless] ;

potential energy gradient, equa-
tions(17)and (76) [dimensionless] ;
thermal Grashof number, equa-
tion (59) [dimensionless] ;
diffusional Grashof number, from
equations (59) and (77) [dimen-
sionless] ;

acceleration of gravity [It™?];
effective local acceleration in
moving coordinates [It~?];

= 0-5402 k/b;, local heat-transfer
coefficient in absence of mass
transfer; see equation (47)
[mt=3T717;

= 0-5402 (k/DK,|GrPr|*, mean
value of h; see equation (51)
[me=3T71];

scale factors of equation (16)
[dimensioniess] ;

interfacial diffusion flux, n,, —
WaolNao + ngo) [ml=2t71];



Nugp,

N0, Npo»

2,

D;
Pr,

Q,

WARREN E. STEWART

coefficient in power law, equation
(57) [ml~*»~ 2],

coefficients in equations (49) and
(51) [dimensionless] ;

mean thermal conductivity of
inner layer {mlt™3T"1];

= 05402 pP,p/d, local mass-
transfer coefficient at small net
mass flux; see equations (47) and
D[mi~2t717;

= 0-5402 (pD,p/) K, | Gr, Sc | %,
mean value of k,: see equations
(51) and (7D [mI~2¢t'];
characteristic length of transfer
surface [1];

= QI/AKT, — T,), mean thermal
Nusselt number at prevailing
mass-transfer rate [dimension-
less] ;

= [Wao — @aoWao + Wao)ll/
ApD ag(Wpg — Wa,) mean diffu-
sional Nusseit number at pre-
vailing mass-transfer rate [dimen-
sionless] ;

exponent in power law, equation
(57), unity for Newtonian flow
[dimensionless] ;

local mass fluxes of species A and
B into fluid at y = 0, relative to
the solid surface [mi~ 2t~ !];
hydrostatic function,

p+ p, ®[ml 't 3]:

static pressure |mt ‘t”?];
Prandtl number, equation (60)
[dimensionless] ;

total rate of heat transfer into fluid
by conduction at interface y =0
[mi?t~3];

conductive heat flux into fluid at
y =0 [mt>];

flux ratio, Ry or R, [dimension-
less] ;

thermal flux ratio in equation (52)
[dimensionless] ;

Mo
=[wpe—w ,:————— @ ]
A0 Aco]/ Mao + Mgo AO |»

mass flux ratio [dimensionless];

r, position vector [I];

Sc, Schmidt number, from equations
(60) and (77) [dimensionless] ;

T, temperature;

v*, velocity vector [It™'];

v, dimensionless velocity vector, v*l/o
or v¥l/D g

v, inner approximation to v;

Wao» Wag, total rates of mass transfer of
species A and B into fluid [mt~'];

X, J, Z, boundary-layer coordinates [di-
mensionless] ;

x((2), starting (stagnation) locus for flow
over transfer surface;

x(2), finishing locus for flow over trans-
fer surface;

y*, = yl, actual distance from nearest
point of surface [1];

Zp 21 lower and upper limits of z for
transfer surface.

Greek symbols

o, = k/pC, ~thermal diffusivity
(21

Br, thermal expansion coefficient,
(—01np/0T), at mean tempera-
ture of inner layer [T ~'];

Boas binary expansion coefficient,
(—01n p/dw,), at mean composi-
tionofinner layer [dimensionless];

7 angle of inclination of cylinder
(Fig. 4) [dimensionless] ;

8,0r,d, characteristic boundary-layer
thicknesses based on velocity, tem-
perature, and composition [[] ;

4 unit vector in the direction of
coordinate i [dimensionless] ;

Z, axial polar coordinate relative to
D in Fig 4 [dimensionless];

1, similarity coordinate in equation
(33) or its binary analog [dimen-
sionless] ;

0, dimensionless temperature,

(T — T)(T, — T,) or composi-
tion, (s — WAL (Wa0 — Waw);
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derivatives of @ with respect to 7
[dimensionless] ;

interfacial value of d@/dy [dimen-
sionless] ;

mean kinematic viscosity of inner
layer [I*t™1];

radial coordinate relative to D in
cylindrical or spherical coordin-
ates;

mean density of inner
[mi™];

density of fluid outside boundary
layer [ml™3];

flux of tangential momentum in y
direction [mi~t™2];

interfacial shear stress on solid,
_Tyx|y=0 [ml_lt_z] ;

potential energy, [I° %] ;
dimensionless mass flux, ¢y or ¢,,:
dimensionless mass flux for heat
transfer, equation (56);
dimensionless mass flux for binary
diffusion, (nsq + npoV/ke =

(Wao + Wao)/komA ;

function defined in equation (31)
[dimensionless] ;

stream function defined in equa-
tions (20)+22) {dimensionless] ;
angular velocity ofrotatingsystem ;
mass fraction of species A.

layer

chemical species ;

starting, finishing;

thermal, diffusional;

tangential (projection on tangent
plane at nearest surface point);
coordinate directions;

aty =0;

at y = c0;

dummy variable.

inner solution;
per unit mass;
dimensional.
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Operations
v, Del operator in space with all
lengths divided by ! [dimension-
less] ;
Ve, projection of operator V onto the

transfer surface;
evaluated at n = 0;
absolute value.

(),

abs,

BASIC EQUATIONS
Consider the transfer of heat from a solid
surface to a pure fluid, by steady, laminar free
convection. The rates of momentum and heat
transfer between the solid and fluid are to be
calculated. If the surface is smooth and free of
pockets which would tend to fill with heated
fluid, then the following boundary-layer equa-

tions are accurate for |GrPr| > 1:

Continuity:
(V-9)=0 (1
Motion (tangential) :
1 1 9%, g,
??‘-2- [‘B Vv], = E—a? — "g' Gre (2)

Motion (normal):

G . B2 g
——A{p + = - 22
e R e L )

Energy:

e
(v.-VO) = I
Here the physical properties are considered
constant, except that the thermal buoyant force
is included. The coordinates and velocity are
dimensionless relative to [ and /I, where « is the
thermal diffusivity and [ is a characteristic
length of the surface. The coordinate y is the
dimensionless distance from the surface into the
fluid, and @ is a dimensionless temperature
{see Nomenclature). The Grashof number, Gr, is
positive when the buoyant force is upward.

(4)
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We wish to determine the rates of heat and
momentum transfer at the surface, under the
following boundary conditions:

aty=0: 9,=0 &=1, 1,=0 (5,6,7
atyl/d » 0:v,»0, @ -0,
p+p, 8P, =const. (89,10

Equation (5) is the no-slip condition. Equation
(7 is the condition of no mass transfer, and will
be relaxed later. Equation (10) is the condition of
hydrostatic equilibrium outside the boundary
layer. These conditions hold over the heat
transfer region, which extends from x(z) to
x (2 and from z to zy in the surface coordinates
(x, z) (see Fig. 1). In addition, the following
condition is given at the upstream boundary of
the transfer region:

an

This means that the upstream boundary is al-
ways a stagnation locus, whatever the surface
geometry may be. This condition is required by
the boundary-layer approximations made in
equations (2) and (4), which permit no tangential
transmission of heat or momentum except by
convection downstream. We do not prescribe
the fluid temperature at x = x(z), since an
adiabatic condition across this surface is im-
plied by equations (4) and (11).

The pressure can be determined readily from
equations (3) and (10}):

at x = x(z), v, =0 for all y.

2 {
P+ pud — P)—s = @Grprzf@ dy. (12)
pa g
y
This variation in (p + p, $) is negligible in the

tangential equation of motion, but it is signifi-
cant in determining the drag force on the solid.

SIMPLIFICATION FOR LARGE Pr
At large Prandt! numbers, on surfaces free of
pockets or level planes, the thermal boundary
layer becomes very thin and the flow becomes
very slow. Equation (2) then reduces to
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Surface streamlines

— Locus
/\ /*k_// x: (2}
t —— —— =}
t ]
. Locus Z=2
Locus SR m— -
z=z
~1 | [

/
Locus (2}

F1c. 1. Surface coordinates for a transfer region on a three-
dimensional body with upward flow (positive Gr). For down-
ward flow boundaries x,(z) and x (z) would be interchanged.

(13
wherever g, and @ are non-zero. The velocity v
thus described is an “inner solution”, accurate
in the thermal boundary layer, and subject to
the following boundary condition in place of
equation (8):

(i)
w0 (14)

at yl/d, — o0
This boundary condition is required in order
that v remain finite at large y, in keeping with
the matching requirements of singular perturba-
tion theory [2]. It is also physically appropriate,
since at large Prandtl numbers the true tangential
velocity attains its peak near the edge of the
thermal layer (see Fig. 2), where yl/d; is large,
while yl/d is still small {3].

With these changes, the boundary-layer prob-
lem is reduced to a description of the thermal
layer at large Pr. The flow outside this inner
layer will not be considered here. The transfer
rates thus calculated are exact in the limit of
large Pr; this has been shown by Morgan and
Warner [4] for two-dimensional systems, and
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the extension of their proof to three dimensions
is straightforward.

STREAMLINES AND COORDINATES
The tangential velocity »® can be calculated
formally by integrating equation (13), under the
boundary conditions (5) and (14):

. y o
o = — @) GrPr [ | O(x.y", 21dy"dy. (19)

y
Thus the tangential velocity »” is in the direc-
tion of g,Gr, ie. the direction of steepest ascent
or descent along the adjoining surface.

To capitalize on equation (15), we take the
dimensionless elevation on the surface as the
coordinate x, and the steepest-descent lines as
the lines of constant z (see Fig. 1). For each
point in the fluid, we take x and z as the values
at the nearest surface point. Then v/ and g,
vanish, and only the x-component of equation
(13) is needed.

The coordinates x, y, z are orthogonal at the
surface, and essentially so throughout the
boundary layer, except where the nearest surface
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point is on a sharp corner, vertex or level plane.
Such exceptional regions are excluded from this
treatment. The scale factors [5] for these co-
ordinates are defined in terms of the dimension-
less vector element of displacement,

ds = d0,h,dx + d,h,dy + d.,h,dz  (16)

in which J,, J, and 8, are unit vectors in the
x, y and z directions. The factor h, is unity;
the other two are approximated by their values
at the surface (since the boundary layer is thin):

1 g . 1
h, = = , 17
T ey abbreviated G2 (17)
1
hz = Ivszl (18)

Here V* denotes the gradient taken along the
surface. The dependence of h, and &, on x and z
is assumed to be smooth, but otherwise arbitrary.
The use of equations (16-18) is illustrated in
the Appendix.

1-0¢
Inner solution
/’—’ _______________________________________
/K .
08l / Velocity (v, /)
/ / X
//
Complete solution
® o6 F
g )
X \
04t \\
\\ Temperature ® :
\\ Inner solution —_———
02 \ Complete SOIUtION  semmme———
] 1 ] o ] L ) e ! L L1 i
o] 2 4 6 8 10 12 14
n=yl 78

Fi1G. 2. Boundary-layer profiles near a heated vertical plate with Pr = 100. Solid lines are exact solutions of
equations (1)}-(12); dashed lines are solutions of equations (1), (3}7) and (9)-14). The quantities ¢ and dr
are calculated from equations (42) and (43)with h, =1 and G = 1.
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Equation (1) can be satisfied directly by
writing »® in the form

|hob, hd, ho,|

1 0 0 0

hehyh, | 0% @

v =curlB =

dy oz
h.B, hB, h,B,

where B,, B, and B, are functions to be deter-
mined. Here we assume that the scale factors
are differentiable as needed. In the present
coordinates, v% is zero; hence B, and B, can
be discarded, and a single stream function,
Y = h,B,, is adequate. Then with h, =1 the
velocity components in the thermal layer be-
come:

1 oy

L

h, 0y’

. 1 oy .
oo _ LW e
g hoh, 8x’ v =0

Insertion of equations (16-22) into equations
(13) and (4) gives:

(20, 21,22
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and can thus be solved in two dimensions at
each value of z. In the next section, the problem is
further reduced to one dimension.

SOLUTION BY COMBINATION OF VARIABLES

The form of the boundary conditions (25)-
(30) suggests a combination of variables. Hence
the following form of solution is tried:

Y = o(x, 2) f(n)
© =0 (32)
n = yl/dHx). (33)

Insertion of these postulates into equations (23)
and (24) gives

(3N

(p13 flll — @ (34)
Gr Prh,Gé3 h

Gérd
— [ T ai;’] e =" (35)

in which f* = d3f/dn3, @ = d*f/dn?, etc. Equa-
tions (25)+29) correspondingly become:

atn=0: f' =0,0=1f=0 (3637,38)

1 &3y atp=00: f"=0,0 =0, (39, 40)
5 = — GrPr@® (23) ) ) )
Gh, dy Equation (30) gives, with the constant taken as
Gl ww) e ., zero:
h\dy dx ox dy) ay* atx = x(2): ¢ = 0. (41
The boundary conditions on ¥ and @ are:
from
oy
aty = 0: — =0, e =1, Y = const.;x = X(2) (25,26,27)
dy
to
ony
at yl/éy — oo 5})_2 =0, =0 x = x2) (28,29)
atx = x(z): ¥ = const.forally > 0. (30)

The constant in equations (27) and (30) can be
taken as zero without loss of generality.
Equations (23)«30) contain no z-derivatives,

Now, if f and @ are to depend only on #, the
bracketted terms in (34) and (35) must be taken
as constants. Taking them both equal to unity
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leads to the following solutions for ¢ and &, 0" = - fO (45)
4 F o S and the combination of variables is confirmed.

9= G,.p,.[ S Ef% dx] (42)  Numerical solutions of equations (44) and

3GrPr ) G (45) under the boundary conditions (36)+{40)

x, {z}

3 are shown in Fig 2. Also shown are the exact
5 — (G [ 4 S hi &] (43, Drofiles for a vertical plate with Pr = 100. The
iGrPr | G* asymptotic calculations are closely confirmed

*2) within the thermal boundary layer.

Equations (34) and (35) then become The interfacial shear stress 7, and energy flux
[f"=-0 44) g, are given by the dimensionless expressions
Tg 5 f 7 4 [ z *
—_— 0 46
TogBTy — T,) S@d’? IO [mrp 5 G%d] sl
0 x,{z)
and
4 (m. Tt
qt;l O0) — = — & % N 7
kmm(fl}, o (0) @'(0) (h,G) [3 P I dx] 4

x,(2}

Here gol/k(T, — T,) is the local Nusselt number. The values of f”(0) and @'(0) for the present
problem are 1-085 and —0-5402. Values for related problems will be considered below.

The vertical drag force on the solid is given by the surface integral of (p+ p® ~ Po) 9,/g — 1,.94/9.
Using equations (12) and (15), one obtains:

xpiry
S 10 h bk, dx dy dz]. @9)

% {5}

pgﬁaﬂb“T) S{S

4

Use of equations (33}, (39}, (43) and {44) then gives:
Zry xpiz}
= ["(0) j j |(87/D heh, dxdz]|

I xgiz}

Fp
PpgBr(Ty -
2xr Xp{z} x
= f"(O)GrPr|~*abs E G ptdx,

21 x:42) Xa{2)

= f"(0)|GrPr|"*K,. (49)

+
G-thtdxdz
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The integral K, is a function of the geometry alone. Values for several systems are given in Table 1,
and their determination is described in the Appendix.
The mean Nusselt number, Nu,, is obtained by averaging equation (47) over the surface:

zpr xp(z) 21 xg(2) l
Nu,, abs hoh,dxdz = — ©@'(0)abs 5 h.h,dxdz
1 x,(2) 1 x,(2) T
zg xg(2) a
=~ @0abs | | Z2dxdz
ox
zr x,{z}
z7r xg(z)
4 3
= — ©'(0)|GrPr|* abs S |§ S G *h¥dx| dz (50)
! xg(z)
or
Nu,, = —0'(0)|GrPr|* K,. (51
This equation is the key result of the present ently written as a thermal flux ratio,
paper. Calculated values of K, are given in C(Ty—T.) constant for
Table 1. Comparisons with experimental data A0~ l0~ Tl Rr=<{ all surface (52)
are given in Table 2; the agreement is excellent. do points (x, 0, z)

Equation (50) holds for heating or cooling,
and gives the same value of K,, since reversal of
the temperature difference merely interchanges
the limits x(2) and x/z). No such symmetry
holds for K, unless the transfer surface looks
the same from above and below ; this is illustrated
by the results in Table 1.

Brenner [9] has shown that in forced con-
vection from an isothermal surface, the Nusselt
number is invariant to reversal of the velocity
field. The result in equation (50) is even more
surprising, because more complicated changes
in the velocity profiles are involved.

HEAT TRANSFER WITH INTERPHASE
MASS TRANSFER (PURE FLUIDS)

Suppose that a pure substance passes through
the interface where the heat transfer occurs, and
that the interfacial mass flux n,q is proportional
to ¢, at all points. Examples of this are evapora-
tion or condensation of a pure substance A at
a porous surface exposed to pure superheated
vapor A.

The proportionality of n,, and g, is conveni-

which serves to compare the interfacial convec-
tive and conductive energy fluxes [10]. The
interfacial value of v, now becomes n,,l/pa, and
equation (7) is replaced as follows:

0
aty=0, o=-R2 (53
dy
Equation (27) then is replaced by:
1 oy 00

The rest of equations (1}-30) remain as before.

The solution in the previous section can be
extended readily to this situation. Insertion of
equations (31)+33) into (54) gives

£(0) = R;0'(0) (55)

in place of equation (38). Equations (44) and (45)
can now be integrated, with this new boundary
condition, to obtain the temperature and velo-
city profiles in the presence of mass transfer.
The velocity and temperature profiles, found
by numerical integration, are plotted in Fig. 3,
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Table 1. Geometric factors for interphase transfer

s Chaoracteristic Other K K
eometry Length, Specificotions ! 2
Sphere Di°fge’°'» 3.20 1.090
Rectongulor
plote {one side) Stant
75 an 0880 (W/L) 174
L UG Hel'-ghf‘ g # 7/2 (Cos 9);/4 f.24¥(€0$ 9}
wa
A— w -/L ] ‘!
Vartical cone,
base insulated Flow Toward Base, 243sin8 1314 {cos &1

g #£#7/2 Nz

d 7 Siont {cos 8
Height,
L
7 Flow Toward Vertex, 275sin8 "
~ e 1.314(cos )
\/ 8 # n/2 (cos &)

Inclined disk

{one side)
/\ Diameter, 0.645 174
Q 8# w/2
Y /lg D T 1.305(cos 8)
/4\3_4
Inclined cylinder, Z =(L/Dicoty —= O | K(D/LMcos 7)™ =270 2] K, (cos 77" = 1241 77"

ends insulated

Z=05 226 1486
Diameter, z=10 266 1272
Z:20 304 1128
Z:® 361 0958
Flot surfaces of - . .
ifsothermul disk 8= (Dy/Dg) —= O K, = 129 Ky = 130
in on a
horizontal fube Fin 0.25 .14 139
Dicfge*en 050 0.83 154
: @ Dr F 075 0.4 1.8
yan 100 2.791-8)%4 t2z7a-si*
Flat surfaces of = / 2 =
isothermal square B=(Dr/W) == 0 Ki =112 Ke = 124
fin on o . 0.25 .56 131
horizontal tube Fin
= width, 050 125 140
%r:q; w 075 0.80 1.56
T ) 1.00 0.25 « .94
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Table 2. Comparisons with electrochemical measurements

Prediction of equation (51), Correlation of data for Correlation

Geomelry  yerived for Nu> 1and Pr> 1 for N Uym > SOand Sc ~ 10° references
Sphere
(=D Nu, = 0-589|Gr Pr|? Nug,, =2 + 0:59|Gr, Sc|* [6]
Vertical plate
(I = height) Nu, = 0670|Gr Pr|} Nu,,, = 0:66|Gr, Scft [7,8]
Horizontal

cylinder
({=D) Nu,, = 0-518|Gr Pr|} Nu,,, = 0-53|Gr,, Sc|? (6]

at various mass-transfer rates as measured by the
dimensionless parameter

¢ - nAOCp - W’Aocp.

T h h,

Here h and h, are the local and mean heat-
transfer coefficients, respectively, in the absence
of mass transfer, obtainable from equations (47)
and (51). Mass transfer into the fluid (positive
¢7) thickens the thermal boundary layer, and

(56)

06}

0-4k

o2k

mass transfer out of the fluid makes the boundary
layer thinner, just as in forced-convection
systems. The velocity gradient at the interface,
however, increases with ¢, which is just the
opposite of the behavior usually found in
forced-convection systems. This behavior is due
to the increase in the total buoyant force with
increasing thermal boundary-layer thickness.
The momentum and heat transfer rates in the
presence of mass transfer are still given by

Flat ¢ =1

n

-
2

FiG. 3. Boundary-layer profiles at high Prandtl or Schmidt number and various mass-transfer rates.
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Table 3. Coefficients for equations (46)—(51) as functions of mass-transfer rate

¢ -0 R S0 ¢ -8'0) R (U
-00 0-5402 —0-0000 1-085 00 0-5402 0-0000 1-085
-01 05671 —00953 1-064 (3] 05143 01051 1-106
-02 0-5948 —-01817 1-044 02 0-4892 0-2209 1126
-03 06234 ~0-2600 1-023 03 0-4651 0-3486 1-147
-04 0-6530 -03311 1-003 0-4 04417 0-4893 1-168
05 06834 —0-3954 0983 05 04193 0-6444 1-188
—-06 07147 —04537 0962 0-6 0-3977 0-8153 12209
-07 0-7469 —0-5064 0942 07 0-3769 1-004 1230
—-0-8 0-7801 —0-5542 0922 0-8 03570 1211 1250
-09 08141 —0-5974 0903 09 0-3378 1-440 1270
-10 0-8489 —0-6366 0-883 10 03194 1-692 1291
—-11 0-8847 —-0-6719 0-864 11 0-3019 1969 1311
—-12 09213 -0-7039 0-845 12 0-2850 2:275 1-331
—-13 0-9587 —-07328 0-826 13 0-2689 2612 1351
-14 09970 —0-7588 0-807 14 0-2536 2984 1371
—1-5 1-0361 —0-7824 0-789 15 0-2389 3-393 1391
-16 1-:0759 —0-8036 0-770 16 02249 3-845 14411
-17 1-1165 —~0-8228 0753 17 02116 4343 1-430
—1-8 1-1579 —0-8401 0-735 18 0-1989 4-891 1-450
-19 12000 —-0-8557 0718 19 01868 5-497 1-469
20 12427 —-0-8697 0-701 20 01753 6164 1-488
-25 1-4662 -09214 0-622 25 0-1263 10-69 1582
-30 1-7030 - (09520 0-553 30 0-0894 18-14 1-671
—-4-0 2-2040 —0-9808 0442 40 00424 51-02 1-835
— © — 10000 0-000 0 0-0000 o) ©

equations (46)-(51), but with altered values of the
coefficients f”(0) and @’'(0). These values are
given in Table 3. The table may be entered with
the argument ¢ for problems where the mass-
transfer rate is known, or with R; if the mass-
transfer rate is to be found.

HEAT TRANSFER iN POWER-LAW FLUIDS

The foregoing results can be generalized to
certain non-Newtonian flows, namely, those in
which the stress tensor t is a power function of
the rate-of-strain tensor Vv. For boundary-layer
flows, the normal component of Vv is dominant,
and the following expression of the **power law”
is adequate:

Ov¥ |1 dv*
oy*| oy
Here dimensional quantities are used, so that K

has the usual dimensions.
With this modified stress relation, equation (2)

T, = —

(57

is replaced by
o 12 n—-11]2

[%— (;—) :l [v - Vo],
_ e <12)n—1 d n—1 60,
" |K \« oy oy

3.2 — 2\2n—2
ot 1,

o,
dy

The coefficients provide natural generalizations
of the Grashof and Prandtl numbers:

3.2 _ 2\2n-2
Gr:[lpgﬂrgo T“(’; ) ] 59)

Ol

It should be noted that these generalized forms
of Gr and Pr are specific to the characteristic
velocity «/! used in this paper. Other generalized

(60)
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forms are available [1], but equations (59) and
(60) are the most convenient here.

The solutions for n = 1 given earlier can be
extended to all n > 0 by the following substitu-
tions. Equations (13), (15), (23), (34) and (44) are
replaced by:

o [|ov®|"? a»gﬂ] g,
— | = — |==GrPr® (61)
5}’[ dy dy g
_4 GrPr
0 _ g
v = g =1/
’—' GrPr’
[

ll/n

y l o
X “S 0(x,y", 2) dy”‘ dy’ (62)
[ %

1 0 azlp n-1 azl//
(pn12n+1 d .
e AL
d (drY

Equations (42) and (43) then are replaced by the
more general forms:

__3n
@ = GrPr|GrPr| 1
x 2n + 1 g G +lp2+1dx (66)
xs(z)
5 1 o
TT = |GrPr| "' [Gh] T
x o 3w 3n+1
) o E R e ©n

| x,(2)

The r’est of equations (1){45) remain as written,
but with Gr and Pr now given by equations (59)
and (60).

Equations (65) and (45) can be solved, with
the boundary conditions (36){40), to obtain

WARREN E. STEWART

the profiles of f and @ at any n > 0. This same
set of equations was solved by Acrivos [1] in his
treatment of two-dimensional systems. The
resulting values of [ f"(0)]" and @'(0) are plotted
in Figs. 2 and 3 of his paper, and hold directly
in three dimensions with the coordinate # now
defined by equations (33) and (67).
The interfacial fluxes now are given by:

To 5TS
_— =G\ 0Odn
logBTy — T,) ! )

= [f"(0)]"|GrPr| ¥+ [G*h; '] e

n
I+l |Fngd

X
__
G 2n+ 1 h22n+ldx

x,(z)

In+1
X
2n+ 1

(68)

and:

‘]01 _ ! i_
Wt -1 205,

1

1
= — @'0)|GrPr|"* ! [GhI]* !

X

« 2PEL N GrEeT ey
2n+1 z

xs{z)

"_
T

(69)

The transfer expressions for the entire surface
correspondingly become

Fp - T
—2 - C,(n)|GrPr| * 70)
Ppg(T, — T,,) 1| GrPr| (

and 1
Nu,, = Cy(n)|GrPr|>+1 (71)

where the coefficients C,(n) and C,(n) are
calculated as follows:

21 xp(z)

Ci(m) = [f0)]" S

21 xs(z)
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n

3n+1
2n n+1 "

T+l In+1
G h2m+1dx,

W

n+
n+1

X

—
gy 3

2

|
|

x,(z)
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thus becomes:
s =9 — a+ [[o x r] x 0] (75)

The terms on the right are the gravitational,
translational and centrifugal contributions.
The preceding development can be applied

2n+2 n+1 . .
X G~ m+1 hw+idxdz|.  (72) here by substituting g ¢ and & for g and &.
2 xr(z) 1
2n 3n+1 3n+1
S 3n_+__1_ G 2"*‘h,2”+1dx ‘dZI
Hl2n+1 4,
Can) = — O(0) (73)
zr xg(2)

]

(2)
(16~ 'h, dx dz|

Zr x,(z)

The heat-transfer expressions given by Acrivos
[1], for two-dimensional and axially symmetric
systems, are specializations of equation (69)
and (71). A table of C,(n) for several shapes is
given in his paper.t

ROTATING AND ACCELERATING SYSTEMS

The foregoing treatment holds for systems
at rest, or in steady translational motion with
respect to a uniform gravitational field. If the
system rotates or accelerates, then additional
forces are introduced. These effects are
important, for example, in free convection in
centrifuges or space vehicles.

Suppose that the transfer surface and un-
disturbed fluid are transported in a container,
and rotate with it at constant angular velocity .
In addition, a reference point of the system
moves with a steady linear acceleration a. Then
the work required to move a unit mass to a
position r relative to the reference point, in
coordinates fixed relative to the container, is:

. = ;f({—g + a - [[o x r] x o]} -dr). (74)

The resultant force on a unit mass located at r

t For the vertical cone, the C v?lues in Reference [1]

need to be multiplied by (sine)>**!. The characteristic
length used there is the slant height.

and usinga datumg.;; magnitude, g,, in place ofg.
The surface coordinate x is now defined as
&.:/lg,, and the lines of constant z are drawn in
the direction of the surface gradient of &;.
Equation (17) then is written,

L lg, 1

*T V84| T Gx.2) (76)

and with this generalization the foregoing
solutions can be applied directly. The co-
efficients K, and K, must, of course, be re-
calculated, since they now depend on ¢ and w
in addition to the geometry of the system.

BINARY SYSTEMS
The thermal problems solved here have
direct analogs for isothermal binary diffusion.
The diffusional results are obtainable by the
following substitutions (see Nomenclature):

S

T = w, Nu - Nu,,

o= Dpp Br = Boa

k= pD g 5p = 8, L (77)
do = Jjao Ry - R,

Pr — Sc $r = Pan

Gr — Gr,,
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The functions f, ¢ and @, and the coordinate #,
will thus be converted directly into the appropri-
ate forms for diffusion. The assumed constancy
of R over the system, in equation (52), implies
the constancy of n,o/ng, in the analogous
diffusional problem.

RANGE OF VALIDITY

This treatment is based on the usual boundary-
layer assumption d;/1 <1, or for diffusion,
8,/ < 1. This assumption is well satisfied in the
mean if Nu, >5 or Nu,, > 5, in view of
equation (50). The choice of an appropriate [
for this criterion is somewhat subjective, but
normally the smallest overall dimension of the
surface should be used. ‘

The results are most accurate at large Prandtl
or Schmidt numbers. For example, limiting-
current measurements at Sc ~ 1000 are re-
produced within the experimental error (see
Table 2). At smaller Prandtl or Schmidt
numbers, the predicted transfer rates are some-
what too high (see Table 4); corrections for this
are being provided in a separate paper [12].

STEWART

This analysis is limited to surfaces free of
pockets and equipotential planes, because of
the assumptions embodied in equation (15).
A simpler rule is that the surface must flood
completely when liquid is poured on from the
top, and must drain completely afterwards.
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APPENDIX A

Calculation of K| and K,
Al. The sphere
For this system we take | = D, x =4c¢cosf and z = ¢,
where & = r/D, and 8 and ¢ are the usual spherical angle
coordinates. The V operator in these coordinates is

aa+5 8 1 @
FY "cae ¢ £sin 6 0¢

and its projection on the surface is:

V= (A

5 18 s 1 a} A2)
°236 T *Esin 000 =4 '
Hence,
G=h'=|Vx|=|6—sin6)|=sinf (A3
2 2
=|Vz| = |6 —])| = — .
A "(sin 9)’ sin § (a4
Equations (49) and (50) can then be applied, with x = 4 cos 8,
x, = —}and x, = }, to obtain:
2r0| @ £
K, =] j‘; {(sin 6,)"* (@ sin 6,)* (—%sin 6, d6 )'
0n r
x (sin )" ¥ (3sin ) x (~ §sin8dh)dd  (A5)
= 3-204 by numerical integration
2z 0
[ %] (sin &~ *{ sin 6)* (—4 sin 0d6)|[F dg
I(2 = 0 L

2z 0

(_[ { ) (—%sin0d6)de

= |3B@.9HI1F = 10%.  (A6)

1027

Here B(a, b) is the beta function.

A2. The inclined plate

Here we take | = L, x = X cos @ and z = Z, where X and
Z are dimensionless Cartesian coordinates measured along
the slope and width of the plate. Then writing the surface
gradient in the coordinates X, Z we get

V¢ = [640/0X + 6,0/0Z]),-, (A.7)
and equation (17) and (18) give:
G=h!=cosf; h, =1 (A.8)

Substitution in equations (49) and (50) yields the following
results for K, and K,:

W/L cos® x
K, = J J , JCOSO *dn! (cos 6)"tdx dz

[

14
=5@* <f) (cos )~ *
W/L cos8 3

{4 [ (cos@)*dx| dz
0 0

W/L cos 0

[ | (cos9)~*dxd:z
0 0

(A9)

K, = = () (cos O)*. (A.10)

These results are valid as long as the plate is not level
(cos 8 # 0).

A3. The inclined cylinder

This geometry is illustrated in Fig. 4 and Table 1. The
transfer zone is of length L on the cylindrical surface. The
remainder of the surface is insulated, and may consist of
flat ends as shown, or an extension of the cylindrical surface.

We use dimensionless cylindrical coordinates &, 6, {, with
the cylinder diameter D as the characteristic length. The
dimensionless elevation at any point 6, { on the surface
& = 4 then becomes:

X = —}cosBcosy + {siny. (A.11)

The surface gradient of x is

10x ox
Vix=|4d 8, /] 7} + 4 A2
X [aéé‘() ‘55]; =, gsin @ cos y ;smy ( )
and its magnitude is

G =h! (A.13)

The general expression for a differential displacement on the
surface is

= /[sin? cos? y + sin?y].

Dds = 8,4 D d6 + 5D dL. (A.14)
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Fic. 4. Horizontal oblique view of tilted cylinder, showing surface coordinate grid. The curved paths are
steepest-ascent lines, computed from equation{A 20}, The angles between the grid lines are altered by the
projection; all are right angles on the surface.

Taking ds parallel to V*x gives the differential equation for
the trajectories of steepest ascent:

df 4
T 5 teepest ascent). AlS
Zginflcosy siny (steep r AL
Integration gives the surface streamlines:
4sinylogtand 6 = { cosy + C(z). (A.16)

Here C(z) is a function of integration, which will become
definite when 2 is defined. The total differential of x along a
surface streamiine is found from {(A.11} and (A.15):

dx = {sin 8cosydd + sinyd(

irsin2 fcos® y + sin?y

dé ; /2
2sin G cosy 7 #22)

- {A1IT
lsin2 #cos?y + sin?y

- dz (y # O
siny

The special case y = 0 will be considered first.

If the cylinder is horizontal (y = (), then the left-hand
side of (A.16) vanishes and the surface streamlines are half
circles of constant {. The choice z = { is then convenient:
this gives h, = | and leads to the following evaluation of
K,and K,:

LiDn| = +
K, =21 [[${cin0) - dsind, ao))
a o 0
% (sin 8y ¥4 sin 6 d8)d¢

#=3-612 L/Dbynumericalintegration (borizontal) {A.18)

Lip

{13 [ (sin 6)~* 4 sin Gde)rd{
1'(2 = i} 33
LD n
§ JGsin8)* (3 sin 6 d6)dC
& 8

2 +
= - [E B (l, E):I # 09581 (horizontal). (A.19)
al3 \2°3
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The factor of 2 in front of the integral for K, is needed to
include both sides of the cylinder, for this choice of z

If the cylinder is not horizontal, then each surface stream-
line passes through the plane { = 0, and we may define z
as the value of 6 on the streamline at that intersection.
Equation (A.16) then becomes:

logtan$ § — logtan} z = 2{ cot 7. (A.20)
The surface gradient of this z-coordinate is
V¢ z = [V'logtanz] (dz/d logtand z)
= [642/sin B} — §2cot ] 5inz}  {A21)

and its magnitude is:

St = /Isin®y + sin® Bcos? y] (2sin z/sin ysin §)  (A.22)

Insertion of equations {A.13), {A.17) and (A.22) into {49) and
(50), and integration over the surface of the cylinder
(-n<z<mn0 <C < L/D), gives for y s 0:

smysmO tdg, r
T 2sinz siny
0

~r O
N (sm y.sm 8)* d‘C dz (A23)
2sinz siny
] Lip
j 4J sin ysin \* d¢ |?
}5 < 2sinz ) siny
Ky= "0 (A24)

% LiD
sin #

;[ J2sinzd£dz

These expressions can be simplified by use of the following
rearrangement of equation (A.20):

sin 6 cot?’$z+17 ,,
sinz [m]e = F(z,u) (A25)
where
u={coty (A.26)
The results for X; and K, then become:
#n (L/D)cot
K, = (siny)"*(coty)™* |
o
ul 3
< [t fPteun dau ) Fandands a2
g i
" *x (L/DYeot y +
{sin p)* (cot y)~* |4
T Fi(@, . (A
: A(L/D) f 3 f (z,u)du| dz. (A28)
0

0
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In the limit as (L/D) coty approaches zero, the function
F(z, u) becomes equal to unity on the entire surface, and
equations (A.27) and (A.28) can be integrated analytically
to obtain:

CACNEAWI AL L
— (si “taf. = - M — .
K, = (siny) n(3) (5) (D) (Dcot/ 0> (A.29)
4NN
~sn (1) )

These results hold for very short inclined cylinders, as well
as for nearly vertical cylinders.

For large values of cot y, i.e. nearly horizontal cylinders,
the limit of equations (A.18) and (A.19) is approached. A
more detailed calculation, using the full equation (A.16)
and the form of (A.17) valid for y # /2, gives:

(—g coty — 0). (A.30)

K, —+3612(L/D)(cos )~ (% coty = oo> (A31)

L
K, — 09581 (cos y)* (:‘5 coty - oo). {A.32)

These forms are valid for very long cylinders, as well as for
nearly horizontal ones.

At intermediate values of (L/D)cot y, numerical integra-
tion is required. A short list of values is given in Table 1.

A4. The isothermal disk fin

The isothermal (perfectly conducting) disk fin is studied
here as a limiting case of actual fins. The geometry is illus-
trated in Table 1 and Fig. 5. Rectangular coordinates are
used, with = Dy, h, = 1 and (since the areas considered
are vertical} b, = 1. The fin and tube surfaces are assumed to
join squarely (no fillet). With this type of joint, the boundary
layers on the fin and tube are independent in the high-Pr
limit, and equations (A.18) and (A.19) hold for the tube.

The boundaries of the fin are

x24+z2=1B* (Joint) (A.33)

and

X 4r=4 {Outer Edge) {A.34)

where B = Dy/Dy. These expressions provide the loci x(z)
and x(z). Thus, for Regions Al and A2 of Fig 5,
Xy = ~ (& — 2% and x; = + /(§ — 7%, whereas for B!
and B2, x, = + /¢ B? — 2 and x; = + /i — z2). Note
that the upper half of the joint forms the stagnation locus for
Bl and B2, since it is the bottom terminus of the steepest
ascent paths for Bl and B2 as long as the joint is square. If
the joint were filleted, then fluid could move across it by
steepest ascent from the surface of the tube; in that case the
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Region A2

Region Al

F1G. 5. Flow paths and integration regions for the disk fin on a horizontal
tube. The arrows show the local direction of steepest ascent.

joint would not be a stagnation locus, and the total heat
transfer rate would be reduced.

In Regions B3 and B4, the streamlines rise vertically from
x, = — /4 — z%) up to the joint. They run together at the
joint and flow along it until it becomes vertical; then they
peel off and rise straight to the top of the fin in accordance
with the steepest ascent rule. For these streamlines, the
value of x; is \/(G — 4 B%); however, the contributions to
K, and K, come entirely from the shaded areas below the
tube, since the “*piling up” of the boundary layer at the joint
reduces its width to zero from there on.

This “*piling up” of the boundary layer from B3 and B4 is
an exaggeration of the actual physical situation, and is caused
by the boundary-layer approximations used here, It should
not be taken literally but as a simplified description of a
region that contributes little to the total transfer rates.
Comparable situations occur at the separation locus on the
cylinder and sphere, without significant effect on the pre-
dictions of Nu, at high Pr or Sc; see Table 1.

With these specifications, equations {49) and (50) give:

3B -
K,=8) [ |3[x~J@GB®—zM)|tdxdz
! 0 V(3B -z%)
3 V-
+4f  § Blx+ G- 2MFdxdz

18 —Vid-h

= 8@t T 4L - ) — JaB? — 2 dz

G
4+
+ 4t [ $2yG - dz (A35)
4B

and
+B
8 [ |41VG - 25 ~ JaB® — M| dz
0

Ka= 57k — 189
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4 {186 - 22
iB
2n; — 1B%

+ (A.36)

Numerical results are given in Table 1. The total transfer
rates correspond to eight times the contribution of Region
B1, plus four times that of A1. The results for square fins in
Table 1 were obtained analogously.

The performance of non-isothermal fins may be estimated
by conventional methods, using a value of h, calculated

103t

from equation (51) at a mean temperature difference for the
system. This extrapolation of results derived for isothermal
surfaces appears to be reasonable, in view of the insensitivity
of 8 to position and temperature difference, shown in
equation (43).

For multiple fins, the results in Table 1 should be accurate,
as long as the thermal boundary layers from adjacent fins
do not overlap. On the basis of Fig. 2, no significant overlap
is expected at fin spacings more than eight times the mean
thermal boundary layer thickness, k/h,,

CALCUL ASYMPTOTIQUE D’'UNE CONVECTION LIBRE DANS DES SYSTEMES
LAMINAIRES TRIDIMENSIONNELS

Résumé—Sont données, pour une convection naturelle dans des systémes laminaires tridimensionnels,

des solutions de couche limite établies pour une densité dépendant de la température ou dépendant de la

composition. Des effets de transfert de masse rapide et de forces centrifuges sont déterminés et les résultats

d’Acrivos (1) pour des fluides 4 “loi-puissance™ sont généralisés. Les résultats sont valables asymptotique-

ment pour des nombres de Prandtl ou de Schmidt élevés. Ils sont remarquablement bien confirmés par
les mesures antérieures sur des réactions électrochimiques limitées par la diffusion.

ASYMPTOTISCHE BERECHNUNG DER FREIEN KONVEKTION IN LAMINAREN
DREIDIMENSIONALEN SYSTEMEN

Zusammenfassung—Es werden Lésungen der Grenzschichtgleichungen angegeben fiir die freie Konvektion
in laminaren dreidimensionalen Systemen. Die Konvektion kann durch Temperatur- bzw. Konzentrations-
abhingigkeit der Dichte hervorgerufen sein. Die Einfliisse von raschem Stoffiibergang und von Zentrifugal-
kriften werden bestimmt, und die Ergebnisse von Acrivos 1] firr Fluide, die einem Potenzgesetz gehorchen,
werden verallgemeinert. Die Ergebnisse gelten asymptotisch fiir grosse Prandtl- und Schmidtzahlen; sie
werden sehr gut bestitigt durch vorangegangene Messungen an diffusionsbegrenzten elektrochemischen

Reaktionen.

ACUMIOTOTUYECHKUN PACUYET CBOBOJJHOM KOHBEKIIWUHU B
JAMNHAPHBIX TPEXMEPHBIX CHUCTEMAX

Andoranua-—IIpuBogATca pelleHUuA  ypaBHEHHIX

IIOTPAHUYHOIO CI0A npu  crOGOHOMN

KOHBEKIMH B JTaMIHAPHBIX TPEXMEPHHIX CHCTEMAX, 00YCIOBIEHHO! 3aBUCUMOCTHIO [IOTHOCTH

OT TeMneparyps uau cocrasa. Onpenensiiorca sQQPerTs GHCTPOr0 MaCcCONEpPEHOCca M HEeHTPOo-

Gemsnpix cuat, OG06MA0TCA pesyabTaTh AKPHBOCA JNA CTENCHHHIX IKUAKOCTeNH. PesyapraTl

ACHMITOTHHYECKM CnpaBeAnuBrl AnA Gonsunmx uuced [lpaupras wanm [mugra. Oum nemoc-

PEACTBEHHO MOATBEPHAAIOTCA NPEIbIAYINMMM M3MEPeHUAMH 3JIeKTPOXMMMYECKUX pearuuit,
KOHTpOIMpYeMBIX IuQdysneit,



