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Abstract-Boundary-layer solutions are given for free convection in laminar three-dimensional systems, 
driven by a temperature-dependent or composition-dependent density. Effects of rapid mass transfer and 
centrifugal forces are determined, and the results of Acrivos [l] for power-law fluids are generalized. The 
results hold asymptotically for large Prandtl or Schmidt number; they are strikingly confirmed by previous 

measurements of diffusion-limited electrochemical reactions. 

INTRODUCTION 

THE EFFECTS of surface shape and orientation 
on free convection are important in heat transfer, 
drying, and electrode processes. These effects 
are difficult to calculate exactly; however, at 
moderately large Prandtl or Schmidt numbers, 
they are tractable by boundary-layer methods. 
Acrivos [ 11 used this approach to calculate free- 
convection heat transfer in twodimensional and 
axially symmetric geometries. Here this 
approach is generalized to threedimensional 
systems, centrifugal fields and high mass-transfer 
rates. 

NOMENCLATURE 

For each physical quantity, the dimensions 
are given in terms of mass (m), length (I), time (t) 
and temperature (I’). 

‘4 ares of transfer surface [r”] ; 

a, linear acceleration of reference 
point [Ire21 ; 

B, vector stream function in equation 
(19) [dimensionless] ; 

G mean heat capacity of inner layer 
[1+-V- ‘1 ; 

Q diameter of cylinder or sphere [1] ; 
9 AB, mean binary diffusivity of inner 

layer [Z”t-‘1 ; 

F D? 

fl 

.f ‘Lf ",f “‘9 

f “W, 

G, 

Gr, 

Gr,, 

92 
Qeff, 

h 

h t?n 

h,, h,, h,, 

vertical drag force on solid; posi- 
tive upward [RI/ t - “1; 
reduced stream function, defined 
in equation (3 1) [dimensionless] ; 
derivatives of f with respect to 
q [dimensionless] ; 
interfacial value of d2fldq2 [di- 
mensionless] ; 
potential energy gradient, equa- 
tions(l7)and(76) [dimensionless] ; 
thermal Grashof number, equa- 
tion (59) [dimensionless] : 
diffusional Grashof number, from 
equations (59) and (77) [dimen- 
sionless] ; 
acceleration of gravity [It- 2] : 
effective local acceleration in 
moving coordinates [ItV2] ; 
= 0.5402 k/6, local heat-transfer 
coefficient in absence of mass 
transfer ; see equation (47) 
[Wit-V-l]; 
= 0.5402 (k&K, ) GrPr )*, mean 
value of h; see equation (51) 
[ml- ST-‘] ; 
scale factors of equation (16) 
[dimensionless] ; 
interfacial diffusion flux, nAO - 
c&,(nAO + ns,,) [ml- 2t- ‘1 ; 
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K 

KI, K,, 

k, 

k W’ 

k onv 

1, 

Nu,, 

NhVlV 

n, 

nAOI %O? 

8, 

!k, 

Q, 

90, 

R. 

R,, 

R 0’ 
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coefficient in power law, equation 
(57) [ml-‘t”-21; 
coefficients in equations (49) and 
(5 1) [dimensionless] ; 
mean thermal conductivity of 
inner layer [ rrllt - 3 T - ‘1; 
= 0.5402 Pg,&8W local mass- 
transfer coefficient at small net 
mass flux ; see equations (47) and 
(77)[ml-* t-l]; 
= 0.5402 (@A& K, 1 Gr, SC 1 *, 
mean value of k, ; see equations 
(51) and (77)[mlF* t-l]; 
characteristic length of transfer 
surface [l] ; 
= Ql/Ak(T, - T,), mean thermal 
Nusselt number at prevailing 
mass-transfer rate [dimension- 
less] ; 

LwAO - c~AO(WAO + wBO)ll/ 

G~Ad~A0 - mAao), mean diffu- 
sional Nusselt number at pre- 
vailing mass-transfer rate [dimen- 
sionless] ; 
exponent in power law, equation 
(57), unity for Newtonian flow 
[dimensionless] ; 
local mass fluxes of species A and 
B into fluid at y = 0, relative to 
the solid surface [wI-~~- ‘1; 
hydrostatic function, 
p + p,!5[m-‘r-2]: 
static pressure tnll ‘t - *] ; 
Prandtl number, equation (60) 
[dimensionless] ; 
total rate of heat transfer into fluid 
by conduction at interface y = 0 
[m12t-3]; 
conductive heat flux into fluid at 
y = 0 [mt-3] ; 
flux ratio, R, or R, [dimension- 
less] ; 
thermal flux ratio in equation (52) 
[dimensionless] ; 

= bA0 - OA,l/ 
nAO 

nAO + nBO 
-(‘)A0 , 

1 

7: 
u*, 
V, 

mass flux ratio [dimensionless] ; 

position vector [I] ; 
Schmidt number, from equations 
(60) and (77) [dimensionless] ; 
temperature ; 
velocity vector [It- ‘1 ; 
dimensionlessvelocityvector,u*l/a 
or u*@A,; 
inner approximation to u; 
total rates of mass transfer of 
species A and B into fluid [nit- ‘1 ; 
boundary-layer coordinates [di- 
mensionless] ; 
starting (stagnation) locus for flow 
over transfer surface; 
finishing locus for flow over trans- 
fer surface ; 
= yl, actual distance from nearest 
point of surface [LJ ; 
lower and upper limits of z for 
transfer surface. 

Greek symbols 
= k/pe,, thermal diffusivity 
[PC- ‘1 ; 
thermal expansion coefficient, 
(-8 In p/aT), at mean tempera- 
ture of inner layer [T - ‘1; 
binary expansion coefficient, 
( - d h p/i?mA), at mean composi- 
tionofinner layer [dimensionless]: 
angle of inclination of cylinder 
(Fig. 4) [dimensionless] ; 
characteristic boundary-layer 
thicknesses based on velocity, tem- 
perature, and composition [I] ; 
unit vector in the direction of 
coordinate i [dimensionless] ; 
axial polar coordinate relative to 
D in Fig. 4 [dimensionless] ; 
similarity coordinate in equation 
(33) or its binary analog [dimen- 
sionless] ; 
dimensionless temperature, 
(T - T,)/(T, - T,) or composi- 
tion, toA - WAm&AO - w.&rn); 
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derivatives of 8 with respect to q 
[dimensionless] ; 
interfacial value of de/& [dimen- 
sionless] ; 
mean kinematic viscosity of inner 
layer [I?- ‘1 ; 
radial coordinate relative to D in 
cylindrical or spherical coordin- 
ates ; 
mean density of inner layer 
[mle3] ; 
density of fluid outside boundary 
layer [ml- 3] ; 
flux of tangential momentum in y 
direction [ml-‘t-2] ; 
interfacial shear stress on solid, 
-5&) [mI-‘t-2] ; 

potential energy, [1’ t-‘1 ; 
dimensionless mass flux, (PT or 4, ; 
dimensionless mass flux for heat 
transfer, equation (56) ; 
dimensionless mass flwc for binary 
diffusion,(n,, + n&/k, = 

@,40 + weo)lLJ; 
function defined in equation (31) 
[dimensionless] ; 
stream function defined in equa- 
tions (20)--(22) [dimensionless] ; 
angular velocity ofrotating system ; 
mass fraction of species A. 

chemical species ; 
starting, finishing; 
thermal, diffusional; 
tangential (projection on tangent 
plane at nearest surface point); 
coordinate directions ; 
aty =O; 

at Y = cg; 
dummy variable. 

Superscripts 
919 inner solution ; 

*’ 
per unit mass; 

9 dimensional. 

Operations 
V, Del operator in space with all 

lengths divided by I [dimension- 
less] ; 

V”, projection of operator V onto the 
transfer surface; 

(O), evaluated at q = 0 ; 
abs, absolute value. 

BASIC EQUATIONS 

Consider the transfer of heat from a solid 
surface to a pure fluid, by steady, laminar free 
convection. The rates of momentum and heat 
transfer between the solid and fluid are to be 
calculated If the surface is smooth and free of 
pockets which would tend to fill with heated 
fluid, then the following boundary-layer equa- 
tions are accurate for [ GrPr 1 9 1: 

continuity : 

(V-v) = 0 

Motion (tangential) : 

Motion (normal) : 

Energy : 

(v.vo) =$. 

(1) 

(2) 

(3) 

(4) 

Here the physical properties are considered 
constant, except that the thermal buoyant force 
is included. The coordinates and velocity are 
dimensionless relative to 1 and a/l, where (x is the 
thermal diffusivity and 1 is a characteristic 
length of the surface. The coordinate y is the 

dimensionless distance from the surface into the 
fluid, and 8 is a dimensionless temperat~e 
(see Nomenclature). The Grashof number, Gr, is 
positive when the buoyant force is upward. 
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We wish to determine the rates of heat and 
momentum transfer at the surface, under the 
following boundary conditions : 

aty=O: a, = 0, 0 = 1, ?.I? = 0 (5% 7) 

at yE/6 -+ co : u, -+ 0, 0 30, 

p + p,& --t p)m = const. (8,9,10) 

Equation (5) is the no-slip condition. Equation 
(7) is the condition of no mass transfer, and will 
be relaxed later. Equation (10) is the condition of 
hydrostatic equilibrium outside the boundary 
layer. These conditions hold over the heat 
transfer region, which extends from x,(z) to 
?cf(z) and from zr to zn in the surface coordinates 
(x, z) (see Fig. 1). In addition, the following 
condition is given at the upstream boundary of 
the transfer region : 

at x = X,(Z), u, = 0 for all y. (11) 

This means that the upstream boundary is al- 
ways a stagnation locus, whatever the surface 
geometry may be. This condition is required by 
the boundary-layer approximations made in 
equations (2) and (4), which permit no tangential 
transmission of heat or momentum except by 
convection downstream. We do not prescribe 
the fluid temperature at x = -u,(z), since an 
adiabatic condition across this surface is im- 
plied by equations (4) and (11). 

The pressure can be determined readily from 
equations (3) and (10): 

m 

(P C P,& - 69’&-$ = ;GrPr2 s 0 dy. (12) 

Y 

This variation in (p +- c,_&) is negligible in the 
tangential equation of motion, but it is signifi- 
cant in determining the drag force on the solid. 

SIMPLIFICATION FOR LARGE Pr 

At large Prandtl numbers, on surfaces free of 
pockets or level planes, the thermal boundary 
layer becomes very thin and the flow becomes 
very slow. Equation (2) then reduces to 

Surface streamlines 

Locus ‘x, L-f 

F?G. 1. Surface coordinates for a transfer region on a three- 
dimensional body with upward flow (positive Gr). For down- 
ward flow boundaries x,(z) and x,(z) would be interchanged. 

a2tp gr 

-=~GrPr* aY2 
(13) 

wherever g, and 0 are non-zero. The velocity I)(~! 
thus described is an “inner solution”, accurate 
in the thermal boundary layer, and subject to 
the following boundary condition in place of 
equation (8) : 

at yt/& -+ co : 
&i! 

-!- 4 0. 
ay 

(14) 

This boundary condition is required in order 
that #I remain finite at large y, in keeping with 
the matching requirements of singular perturba- 
tion theory [2]. It is also physically appropriate, 
since at large Prandtl numbers the true tangential 
velocity attains its peak near the edge of the 
thermal layer (see Fig. 2), where yI& is large, 
while yl/i5 is still small 131. 

With these changes, the boundary-layer prob- 
lem is reduced to a description of the thermal 
layer at large Pr. The flow outside this inner 
layer will not be considered here. The transfer 
rates thus calculated are exact in the limit of 
large Pr ; this has been shown by Morgan and 
Warner (41 for two-dimensional systems, and 
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the extension of their proof to three dimensions point is on a sharp corner, vertex or level plane. 
is straightforward. Such exceptional regions are excluded from this 

treatment. The scale factors [5] for these co- 
STRJMMLIh’ES AND COORDINATES ordinates are defined in terms of the dimension- 

The tangential velocity I$! can be calculated less vector element of displacement, 
formally by integrating equation (13). under the 
boundary conditions (5) and (14) : 

ds = 6,h, dx + 6,h, dy + 6,/t, dz (16) 

ui’! = - @,/g) GrPr .[ 5 0(x, y”, z) dy” dy’. 
in which 6, S,, and S, are unit vectors in the 

(15) X, y and z directions. The factor h, is unity; 
the other two are approximated by their values 

Thus the tangential velocity uii! is in the direc- at the surface (since the boundary layer is thin) : 
tion of g,Gr, i.e. the direction of steepest ascent 
or descent along the adjoining surface. 

To capitalize on equation (15) we take the 
-- 

dimensionless elevation on the surface as the 

h, = , $, , = _t,, abbreviated G(t, z) (17) 

coordinate x, and the steepest-descent lines as 
the lines of constant z (see Fig. 1). For each hZ = +, * (18) 

point in the fluid, we take x and z as the values 
at the nearest surface point. Then vt) and gZ 
vanish, and only the x-component of equation Here V” denotes the gradient taken along the 
(13) is needed. surface. The dependence of h, and h, on x and z 

The coordinates x, y, z are orthogonal at the is assumed to be smooth, but otherwise arbitrary. 
surface, and essentially so throughout the The use of equations (16-18) is illustrated in 
boundary layer, except where the nearest surface the Appendix. 

Inner solution 

Temperature 8 : 

Inner solution - - - - 

Complete solution - 

FIG. 2. Boundary-layer prdliles near a heated vertical plate with Pr = 100. Solid lines are exact solutions of 

equations (lt(12); dashed lines are solutious of equations (l), (3H7) and (9)-14). The quantities cp and dT 

arc calculated from equations (42) and (43) with h, = I and G = 1. 
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Equation (1) can be satisfied directly by and can thus be solved in two dimensions at 
writing uCi! in the form each value of z. In the next section, the problem is 

I &A v, M I 
further reduced to one dimension. 

I)(~! = curl B = 
1 a a a SOLUTION BY COMBINATION OF VARIABLES 

h,h,h,z ay az 
(1% The form of the boundary conditions (25)- 

h,B, hyBy hZBZl 
(30) suggests a combination of variables. Hence 
the following form of solution is tried: 

where B, B,, and B, are functions to be deter- 
mined. Here we assume that the scale factors 
are differentiable as needed. In the present 
coordinates, ut) is zero ; hence B, and B, can 
be discarded, and a single stream function, 
1+5 = h,B,, is adequate. Then with h, = 1 the 
velocity components in the thermal layer be- 
come : 

#’ _ l a$ - -. 
x - h, ay ’ 

W = 
VY 

1 w . 
h,h, & ’ 

up = 0. (20,21,22) 

Insertion of equations (16-22) into equations 
(13) and (4) gives : 

11/ = d? Z)f(?) (31) 

0 = O(q) (32) 

? = y&W. (33) 

Insertion of these postulates into equations (23) 
and (24) gives 

in which f “’ = d3f/d$, 0” = d2f/dq2, etc. Equa- 
tions (25)_(29) correspondingly become : 

at rj = 0: f' = 0, 0 = 1, f = 0 (36,37,38) 

I a3* at rj = cc : f" = 0,O = 0. (3% 40) 
-3= 
Ghz by 

- GrPrO (23 
Equation (30) gives, with the constant taken as 

a+ao a20 

> 

zero : 
-- 
ax ay = ay2 (24) at I = x,(z): cp = 0. (41) 

The boundary conditions on t+G and 8 are: 

1 from 

a+ aty=O: -=O, 
ay 

0 = 1, $ = const. 

i 

x = X,(Z) (25,26,27) 
to 

aty1/6,+ co:$ = 0, 0 = 0 J x = S/(Z) C&29) 

at s = X,(Z): II/ = const. for all y > 0. (30) 

The constant in equations (27) and (30) can be Now, if f and 0 are to depend only on q, the 
taken as zero without loss of generality. bracketted terms in (34) and (35) must be taken 

Equations (23)-(30) contain no z-derivatives, as constants. Taking them both equal to unity 



leads to the follow~g solutions for yt and 6,: 

Equa~ons (34) and (35) then become 
f”” = - @ 144) 

@” =I - j-0’ (45) 

and the ~ornb~~a~jo~ of variables is confnmed. 
Numericaf solutions of equations (44) and 

(45) under the boundary conditions f3Q-050) 
are shown in Fig. 2, Also shown are the exact 
profiles for a vertical plate with Pr = 100. The 
asymptotic calculations are closely contirmed 
within the thermaf boundary layer. 

The interfacial shear stress rQ and energy flux 
q. are given by the dimensionless expressions 

(46) 

aad 

147) 

Here qol~~~o - T,) is the Ioml Nnsselt number. The values of f”(O) and ~~~) for the present 
problem are I.085 and -05402. V&res for related problems will be considered below. 

The vertical drag farce on the solid is given by the surface integral of (p-k p,& - Pm) g,/g - z,,g,/g, 
tlsing equations (12) and (1% one obtains : 

(49) 
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The integral K, is a function of the geometry alone. Values for several systems are given in Table 1, 
and their determination is described in the Appendix. 

The mean Nusselt number, Nu,, is obtained by averaging equation (47) over the surface: 

Nu, abs 
ss 

h,h, d?c dz = - O’(O) abs $ h,h, d.u dz 
T 

=I X,(Z! 

= - O’(0) abs $dlrdz 

or 

NY,, = -@'(O)IGrPrl* K,. (51) 

This equation is the key result of the present 
paper. Calculated values of Kz are given in 
Table 1. Comparisons with experimental data 
are given in Table 2; the agreement is excellent. 

Equation (50) holds for heating or cooling, 
and gives the same value of K,, since reversal of 
the temperature difference merely interchanges 
the limits .X,(Z) and .X,(Z). No such symmetry 
holds for K, unless the transfer surface looks 
the same from above and below ; this is illustrated 
by the results in Table 1. 

Brenner [9] has shown that in forced con- 
vection from an isothermal surface, the Nusselt 
number is invariant to reversal of the velocity 
field. The result in equation (50) is even more 
surprising, because more complicated changes 
in the velocity profiles are involved. 

HEAT TRANSFER WITH INTERPHASE 
MkS TRANSFER (PURE FLUIIjS) 

Suppose that a pure substance passes through 
the interface where the heat transfer occurs, and 
that the interfacial mass flux nAO is proportional 
to q,, at all points. Examples of this are evapora- 
tion or condensation of a pure substance A at 
a porous surface exposed to pure superheated 
vapor A. 

The proportionality of nAO and q. is conveni- 

ently written as a thermal flux ratio, 

%WQTo-L),R = 
T 

qo 
(52) 

which serves to compare the interfacial convec- 
tive and conductive energy fluxes [lo]. The 
interfacial value of uY now becomes n,,l/pa and 
equation (7) is replaced as follows: 

at y = 0, 
ao 

vy= - RT-. 
ay 

Equation (27) then is replaced by: 

(53) 

i a+ a8 
aty=O, hh= R,--. 

ay 
(54) 

X Z 

The rest of equations (1)-(30) remain as before. 
The solution in the previous section can be 

extended readily to this situation. Insertion of 
equations (3 1 H33) into (54) gives 

f(0) = RTO’(O) (55) 

in place of equation (38). Equations (44) and (45) 
can now be integrated, with this new boundary 
condition, to obtain the temperature and velo- 
city profiles in the presence of mass transfer. 

The velocity and temperature profiles, found 
by numerical integration, are plotted in Fig. 3, 



Geometry 

Sphere 

Vertical cone, 
hose insulated 

Inclined disk 
fone side) 

Incliped cylinder, 
ends insulated 

f lot curfoc?s o< 
is$he&m$ dusk 

horizontal tube 

flat surfaces of 
isothermal squorc 
fin on 0 
horizontal tube 
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Table 1. Geometric factors for interphase transfer 

1021 

horocteristi 

Length, 

Diameter, 
0 

Slonf 
Height, 

L 

Slant 
Height, 

L 

Diameter, 
0 

Fin 
Diometsr, 

4 

Fin 
Width, 

w 

Other 

Specifications 

@ + 7v2 

low Toword Bose, 
B faf2 

low Toword Vertex, 
8 # r/2 

= fLID)cot Y - 0 

z = 0.5 

Z= I.0 

Z=Z.O 

Z=@ 

B = (DT/DF) -C 0 

0.25 

0.50 

0.75 

1.00 

f3= (D,/W) - 0 Kl = 1.72 K2 = 1.24 

0.25 I.56 I.31 

0.50 I.25 1.40 

0.75 0.80 I.56 

1.00 0.25 c 1.94 

3.20 
I 

1.090 

0.645 
kx3s 8)‘” I 1.305(cos 8)‘” 

K,(D/tkos 7jM = 25’0 ZiM K, tcos Yfif4 = 1.241 Z-‘” 

2.26 I.486 

2.66 1.272 

3.04 1.128 

3.61 0.958 

K, = 1.29 K2 = 1.30 
I 

1.14 1.39 
! 

0.83 1.54 

/ 0.41 f.EQ 

2.79tl-Bfg’4 t.27(t-sj+4 
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Table 2. Comparisons with electrochemical measurements 

Geometry 
Prediction of equation (51), Correlation of data for Correlation 

derived for Nu & 1 and Pr % 1 for Nu,, > 50 and SC _ 10” references 

Sphere 
(1 = D) Nu, = 0.589(Gr I+(* N a,, = 2 + 0,59(Gr,Scj* [61 
Vertical plate 
(I = height) Nu, = 0.670 1 Gr Pr I* Nu,, = 0.66 ( Gr, SC (* 17981 
Horizontal 

cylinder 
(1 = D) Nu, = 0.5181GrPrI* Nu,, = 0.53 ) Gr, Sc(* WI 

- 

at various mass-transfer rates as measured by the 
dimensionless parameter 

Here h and h,,, are the local and mean heat- 
transfer coefficients, respectively, in the absence 
of mass transfer, obtainable from equations (47) 
and (51). Mass transfer into the fluid (positive 
4,) thickens the thermal boundary layer, and 

mass transfer out of the fluid makes the boundary 
layer thinner, just as in forced-convection 
systems. The velocity gradient at the interface, 
however, increases with &, which is just the 
opposite of the behavior usually found in 
forced-convection systems. This behavior is due 
to the increase in the total buoyant force with 
increasing thermal boundary-layer thickness. 

The momentum and heat transfer rates in the 
presence of mass transfer are still given by 

FIG. 3. Boundary-layer profiles at high Prandtl or Schmidt number and various mass-transfer rates. 
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Table 3. Coeficients for equations (4+0-(l) as functions of mass-transfer rate 

1023 

Q - S’(0) R f “(0) 

-0.0 0.5402 - 0~0000 1.085 
-0.1 0.5671 -00953 1.064 
-0.2 0.5948 -0.1817 1.044 
-0.3 0.6234 - 0.2600 1.023 
-0.4 0.6530 -0.3311 lx)03 
-05 0.6834 - 0.3954 0.983 
-0.6 0.7147 - 0.4537 0.962 
-0.7 0.7469 - 0.5064 0.942 
-0.8 0.7801 - 0.5542 0.922 
-0.9 0.8141 - 0.5974 0.903 
- 1.0 0.8489 -06366 0.883 
-1.1 0.8847 - 0.6719 0.864 
- 1.2 09213 - 0.7039 0.845 
- 1.3 0.9587 - 0.7328 0.826 
-1.4 09970 -@7588 a807 
- 1.5 1.0361 - 0.7824 0.789 
-1.6 1.0759 - 0.8036 0.770 
- 1.7 1.1165 - 0.8228 0.753 
-1.8 1.1579 - 0.8401 0.735 
- 1.9 1~2000 -0.8557 0.718 
-2.0 1.2427 - 0.8697 0.701 
-2.5 1.4662 -0.9214 0.622 
-3.0 1.7030 - 0.9520 0.553 
-4.0 2.2040 - 0.9808 0.442 
--co co - 1~0000 omo 

4 - 8’(O) R f “(0) 
~__ 

PO 0.5402 omOO 1.085 
0.1 0.5143 01051 1.106 
0.2 0.4892 02209 1.126 
03 0.4651 0.3486 1.147 
0.4 04417 0.4893 1.168 
0.5 04193 0.6444 1.188 
0.6 0.3977 08153 1.209 
0.7 0.3769 1.004 1.230 
0.8 0.3570 1.211 1.250 
0.9 0.3378 1440 1.270 
1.0 0.3194 1.692 1.291 
1.1 03019 1.969 1.311 
1.2 0.2850 2.275 1.331 
1.3 0.2689 2612 1.351 
1.4 02536 2.984 1.371 
1.5 0.2389 3,393 1.391 
1.6 0.2249 3.845 1.411 
1.7 0.2116 4343 1.430 
1.8 0.1989 4891 1.450 
1.9 0.1868 5.497 1.469 
2.0 0.1753 6164 1.488 
2.5 0.1263 1069 1.582 
3.0 0.0894 18.14 1.671 
4.0 0.0424 51.02 1.835 
co 0.0000 co cc 

equations (46)-(51), but with altered values of the is replaced by 
coefficients f”(0) and O’(0). These values are 
given in Table 3. The table may be entered with 
the argument & for problems where the mass- [$ (;)“-‘I’ [a .Vv,, 

transfer rate is known, or with R, if the mass- 
transfer rate is to be found. = ~(!!J_!_[~?!?~“-l$] 

HEAT TRANSFEX iti POWER-LAW FLUIDS gt ~3p2sBATo - KJ l2 2n-2 -- 

The foregoing results can be generalized to 9 [ 0 1 K2 cc 

8 - (58) 
certain non-Newtonian flows, namely, those in 
which the stress tensor z is a power function of The coefftcients provide natural generalizations 

the rate-of-strain tensor Vu. For boundary-layer of the Grashof and Prandtl numbers: 

flows, the normal component of Vu is dominant, 
and the following expression of the “power law” Gr = 13p2sBAX, - T,) I2 2n-2 
is adequate : 0 1 K2 ii (59) 

ryt = 
_ K 3 n-lav: I I ay* ay* (57) Pr =[ ;($-‘I. (60) 

Here dimensional quantities are used so that K It should be noted that these generalized forms 
has the usual dimensions. of Gr and Pr are specific to the characteristic 

With this modified stress relation, equation (2) velocity cr/l used in this paper. Other generalized 
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forms are available [l], but equations (59) and 
(60) are the most convenient here. 

The solutions for n = 1 given earlier can be 
extended to all n > 0 by the following substitu- 
tions. Equations (13), (15), (23), (34) and (44) are 
replaced by : 

the profiles off and 0 at any n > 0. This same 
set of equations was solved by Acrivos [l] in his 
treatment of two-dimensional systems. The 
resulting values of [f”(O)]” and O’(0) are plotted 
in Figs. 2 and 3 of his paper, and hold directly 
in three dimensions with the coordinate q now 
defined by equations (33) and (67). 

“)i! = 
- ; GrPr 

l-l/n 

= [f”(O)]” ,Grpr(-& [G2h;‘]%% 

X 0(x, y”, z) dy” dy’ (62) 

&$[ i$lnel$]= - GrPrO (63) and : 

jcpl” lZn+l d(f,?)L -0 
GrPrGht S$” ’ dq 

(64) 

(65) 

qol 
k(T, - T,) = 

- B’(O)$ 
T 

1 

ZZ- O’(0))GrPr[3” + ’ [Ghij2”’ ’ 

Equations (42) and (43) then are replaced by the 
more general forms: 

cp = GrPr 1 GrPr 1 3n3: ’ 

3n+l X I s 
2n + I 

G-&hsd 3n+ I 

x 2n+l z I (66) 

X,(-b 

F = IGrPr[ ’ [Gh$& -3n+l 

5s 

(67) 

The rest of equations (1)-(45) remain as written, 
but with Gr and Pr now given by equations (59) 
and (60). 

Equations (65) and (45) can be solved, with 
the boundary conditions (36)-(40), to obtain 

The interfacial fluxes now are given by: 

x 

2n 3n+ 1 &i 
G 2n + 1 hz2n + l& (68) 

x 

3n + 1 I s _Zn !!%! -& 

x 2nfl 
G 2n + 1 hz2n + I& (69) 

%(Z’ 

The transfer expressions for the entire surface 
correspondingly become 

FD 
I 

~3PsBT(Tl - Tm) 
= C,(n)lGrPrj 3n + ’ (70) 

and 
-_ 

Nu, = C,(n)(GrPr13” ‘, ’ (71) 

where the coeffkients C,(n) and C,(n) are 
calculated as follows : 
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n thus becomes : 
x 3 +1 

3n+ 1 G-&+dX ” 

2n + 1 s 
Z . 1 

Q&f = g - II + [[a x r] x co]. (75) 

X,(Z) The terms on the right are the gravitational, 
translational and centrifugal contributions. 

2n + 2 n+l 
The preceding development can be applied 

x G- Znil h,2nfdxdzI. (72) here by substituting geff and &,, for g and 6. 

‘r’ [G-‘h,dsdzI 
X:(2! 

The heat-transfer expressions given by Acrivos 
[l], for two-dimensional and axially symmetric 
systems, are specializations of equation (69) 
and (71). A table of C,(n) for several shapes is 
given in his paper.? 

ROTATING AND ACCELERATING SYSTEMS 

The foregoing treatment holds for systems 
at rest, or in steady translational motion with 
respect to a uniform gravitational field. If the 
system rotates or accelerates, then additional 
forces are introduced. These effects are 
important, for example, in free convection in 
centrifuges or space vehicles. 

Suppose that the transfer surface and un- 
disturbed fluid are transported in a container, 
and rotate with it at constant angular velocity w. 
In addition, a reference point of the system 
moves with a steady linear acceleration u. Then 
the work required to move a unit mass to a 
position r relative to the reference point, in 
coordinates fixed relative to the container, is : 

&ieff = i (( -9 + a - [[0 x r] x CD]> l dr). (74) 
b 

The resultant force on a unit mass located at r 

7 For the vertical cone, the CT in Reference [l] 

need to be multiplied by (sin ~)~“+l. The characteristic 
length used there is the slant height. 

(73) 

andusingadatumg,,, magnitude,g,,inplaceofg. 
The surface coordinate x is now defined as 
&eff/lgl, and the lines of constant z are drawn in 
the direction of the surface gradient of &efr. 
Equation (17) then is written, 

hx = & = G(i, z) 
(76) 

and with this generalization the foregoing 
solutions can be applied directly. The co- 
efficients K, and K, must, of course, be re- 
calculated, since they now depend on u and w 
in addition to the geometry of the system. 

BINARY SYSTEMS 

The thermal problems solved here have 
direct analogs for isothermal binary diffusion. 
The diffusional results are obtainable by the 
following substitutions (see Nomenclature) : 
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The functions f; cp and 0, and the coordinate q, 
will thus be converted directly into the appropri- 
ate forms for diffusion. The assumed constancy 
of R, over the system, in equation (52), implies 
the constancy of n,&tBO in the analogous 
diffusional problem. 

This analysis is limited to surfaces free of 
pockets and equipotential planes, because of 
the assumptions embodied in equation (15). 
A simpler rule is that the surface must flood 
completely when liquid is poured on from the 
top, and must drain completely afterwards. 

RANGE OF VALIDITY 

This treatment is based on the usual boundary- 
layer assumption &/I 6 1, or for diffusion, 
6,/l + 1. This assumption is well satisfied in the 
mean if Nu, > 5 or Nu,, > 5, in view of 
equation (50). The choice of an appropriate 1 
for this criterion is somewhat subjective, but 
normally the smallest overall dimension of the 
surface should be used. 
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The results are most accurate at large Prandtl 
or Schmidt numbers. For example, limiting- 
current measurements at SC h 1000 are re- 
produced within the experimental error (see 
Table 2). At smaller Prandtl or Schmidt 
numbers, the predicted transfer rates are some- 
what too high (see Table 4); corrections for this 
are being provided in a separate paper [ 121. 
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APPENDIX A 

A 1. The sphere 
Calculation of K, and K, 

For this system we take 1 = D, x = fcos0 and z = 6, 
where 5 = r/D, and t? and 6 are the usual spherical anglq 
coordinates. The V operator in these coordinates IS 

and its projection on the surface is : 

Hence. 

G = hi’ = lVssl = I&(- sin 0)l = sin 0 

h;’ = IV”tl = 6, & =-&,. 
I( >i 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

Equations (49) and (50) can then be applied, with x = f cos 0, 
Y, = -+ and I, = +, to obtain: 

K, = ~~/f,~(sine,)-3(isine,)i(-tsine,d8,)/* 

x (sin 0)-j (4 sin 0)* x (- f sin 0 de) dd 

+ 3.204 by numerical integration 

2% 0 
~j$S(sinB)-3(fsin@‘(-fsinBdB)j*d4 

K,=’ = 7.X 0 
1 j(+)(-fsin0dB)d~ 
6, 

(A.5) 

(A.6) 

Here B(a, b) is the beta function. 

A2. The inclined plate 
Here we take I= L, x = X cos 0 and z = Z, where X and 

Z are dimensionless Cartesian coordinates measured along 
the slope and width of the plate. Then writing the surface 
gradient in the coordinates X, Z we get 

vs = [s,ajax + s,ajaz],,, (A.7) 

and equation (17) and (18) give: 

G=h,‘=cosO; h, = 1. (‘4.8) 

Substitution in equations (49) and (50) yields the following 

results for K, and K, : 

W,L The x 

K, = 
SSI s 

; (cosB)-3dxl Ifcos0)‘fdxdr 

0 0 0 

= $ (j)f (A.9) 

ly“ ‘tcae 
K, = 

i (s b (cos6)-‘d\fdr 

W,L ECm e = ($)* (cos e)*. (A.lO) 

[ f (costI-‘dxdz 
b b 

These results are valid as long as the plate is not level 
(COS e z 0). 

A3. The inclined cylinder 
This geometry is illustrated in Fig. 4 and Table 1. The 

transfer zone is of length L on the cylindrical surface. The 
remainder of the surface is insulated, and may consist of 
flat ends as shown, or an extension of the cylindrical surface. 

We use dimensionless cylindrical coordinates 5, t7, c, with 
the cylinder diameter D as the characteristic length. The 
dimensionless elevation at any point 8, [ on the surface 
5 = f then becomes: 

x = -+cos8cosy + [siny. 

The surface gradient of x is 

(A.ll) 

V” x = &if + 15, a; 1 f SB sin 0 cos y + 6, sin y (A.12) e + 
and its magnitude is 

G = h;’ = ,,/[sin2tIcos2y + sin2y]. (A.13) 

The general expression for a differential displacement on the 
surface is 

Dds = &,fDdB + 6,Ddc. (A.14) 
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FE. 4. Horizontal oblique view of tilted cylilider, showing surface coordinate grid. The curved paths are 
steepest-ascent fines computed from eq~at~o~(A.2~~. The angles between the grid lines are aftered by the 

projection ; aII are right angles on the surface. 

Taking dF parallel to 0% gives the differential equation for 
the trajectories of steepest ascent: 

dt? dl 
1sinBcosp-zq 

(steepest ascent). (AS5) 

Integration gives the surface streamlines: 

fsinylogtan$O= [cosy f C(z). (A.16) 

Here C(z) is a functian of integration, which will become 
definite when I is defined. The total differential of x along a 
surface srreamiine is found from (All) and (A.15): 

dx=fsin@cosydO+sinyd[ 

(y ic nPt 
= (AS?) 

(Y ir4 0). 

The special caSe y = 0 will be. considered first. 
If the cylinder is horizontal (y = 0), then the left-hand 

side of (A.16) vanishes and the surface streamlines are half- 
circles of constant i. The choir z = < is then convenient; 
this gives h, = I and leads to the fo~~~~~ evaluation of 
K, and X,: 

K, = 2L~Tls4j(sint)l)-t(:sin8,dB,)/* 
bb Cl 

x (sin @)-’ (i sin B de) d[ 

+ 3612 L/Dbynumer~~alintegratiorr (horizontal) (A.18) 

-j, 0.9581 (horizontal). (A.191 
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The factor of 2 in front of the integral for K, is needed to 
include both sides of the cylinder, for this choice of z. 

If the cylinder is not horizontal, then each surface stream- 
Iine passes through the plane 5 = 0, and we may define z 
as the value of # on the streamline at that intersection. 
Equation (A. 16) then becomes : 

logtan$O-logtanfz=2[coty. (A.20) 

The surface gradient of this z-coordinate is 
Vd z = [V’ log tan 4 z] (dz/d log tan $ z) 

= [6e(2/sin 6) - 6{(2 cot y)] (sin z) 

and its magnitude is: 

(A.2 1) 

k; ’ = ,/[sin’ y + sin’ @ cos* y] (2 sin z/sin y sin 0) (A.22) 

Insertion of equations (A.13), (A.17) and (A.22) into (49) and 
(50), and integration over the surface of the cylinder 
(-n<z<x,Oa[<L/D),givesfory#O: 

(A.23) 

n LID 

K,=_” O (A.241 
1 LID 
c F 

JJ sin 0 
-dcdz 

_-r o 2sinz 

These expressions can be simplified by use of the following 
r~rrangement of equation (A.20): 

g = [~~~~e~~]e2u = F(z, a) (A.25) 

where 

‘4 = icoty. 

The results for I(, and K, then become: 

(A.26) 

K, = (sin y)-*(cot y)-+ i 
,L,D!cot 

1 
0 

(A.27) 

* 
K, = (sin y)*(cot 

G/D) 
F+(z, u) du dz. (A.28) 

0 0 

In the limit as (L/D) cot y approaches zero, the function 
F(z, u) becomes equal to unity on the entire surface, and 
equations (A.27) and (A.28) can be integrated analytically 
to obtain : 

K, +(siny)-*n G)‘@(;y (;cot,+O) (A.29) 

~~cot~~o). (A.30) 

These results hold for very short inclined cylinders, as well 
as for nearly vertical cylinders. 

For large values of cot y, i.e. nearly horizontal cylinders, 
the limit of equations (A.18) and (A.19) is approached. A 
more detailed calculation, using the full equation (A.161 
and the form of (A.17) valid for y # x/2, gives : 

K, -+ 3612 (L/D) (cos y)-* (;cot y + m) (A.31) 

K, + 0.9581 (cos y)* (;cot y -+ m). (A.32) 

These forms are valid for very long cylinders, as well as for 
nearly horizontal ones. 

At intermediate values of (L/D) cot y, numerical integra- 
tion is required. A short list of values is given in Table 1. 

A4. The isorkern~al diskfin 
The isothermal (perfectly conducting) disk fm is studied 

here as a limiting case of actual fins. The geometry is illus- 
trated in Table 1 and Fig. 5. Rectangular coordinates are 
used, with 1 = D, k, = 1 and (since the areas considered 
are vertical) k, = 1. The fm and tube surfaces are assumed to 
loin squarely (no fillet). With this type of joint, the boundary 
layers on the fm and tube are independent in the high-& 
limit, and equations (AS) and (A.19) hold for the tube. 

The boundaries of the fm are 

and 

x2 + z* = $B* (Joint) (A.33) 

x2 + zz = 4 (Outer Edge) (A.34) 

where B = D,/D,. These expressions provide the loci x,(z) 
and x,(z). Thus, for Regions Al and A2 of Fig. 5, 
x8 = - d($ - z2) and x, = + & - z2), whereas for Bl 
and B2, x, = + ,&B2 - z*) and xI = + & - z*). Note 
that the upper half of the joint forms the stagnation locus for 
Bi and B2, since it is the bottom terminus of the steepest 
ascent paths for Bl and B2 as long as the joint is square. If 
the joint were filleted, then fluid could move across it by 
steepest ascent from the surface of the tube: in that case the 
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F@iin A2 Region Al 

FIG. 5. Flow paths and integration regions for the disk fm on a horizontal 
tube. The arrows show the local direction of steepest ascent. 

joint would not be a stagnation locus, and the total heat 
transfer rate would be reduced. 

With these specifications, equations (49) and (50) give: 

In Regions B3 and B4, the streamlines rise vertically from *a V’t+-z*’ 
X, = - J(j - 2’) up to the joint. They run together at the 
joint and flow along it until it becomes vertical; then they 1 

K, = 8 i j,jaI_t1,14P - J(@Jr - z’)l/*d.\:dZ 

peel off and rise straight to the top of the fm in accordance 
with the steepest ascent rule. For these streamlines, the 
value of x, is ,/($ - 4 S2); however, the contributions to 

+ 4+i _:;;i;;:,$[~ f J(& - z*)] (* dxdz 

Kr and K, come entirely from the shaded areas below the 
tube, since the “piling up” of the boundary layer at the joint 

= 8($)* f &,‘($ - z2) - &B* - zZ)lf dz 

reduces its width to zero from there on. 
This “piling up” of the boundary layer from B3 and B4 is 

an exaggeration of the actual physical situation, and is caused 
+ 4@* 3 4[2& - .z2)J* dz (A.35) 

+a 
by the boundary-layer approximations used here. It should 
not be taken literally but as a simplified description of a and 
region that contributes little to the total transfer rates. 
Comparable situations occur at the separation locus on the 8 ‘i’ \&I’(+ - z2) - ,,‘(#r - z’)] It dz 
cylinder and sphere, without significant effect on the pre- 
dictions of Nu,,, at high Pr or SC; see Table 1. 

K,= o 
2rc($ - $Bf) 
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4 ; I;,/(3 - z’)[*dz from equation (51) at a mean temperature difference for the 
+ fB 

2x(; -#z) I 
(A.36) system. This extrapolation of results derived for isothermal 

surfaces appears to be reasonable, in view of the insensitivity 
of 6, to position and temperature difference, shown in 

Numerical results are given in Table 1. The total transfer equation (43). 
rates correspond to eight times the contribution of Region For multiple fins, the results in Table 1 should be accurate, 
Bl, plus four times that of Al. The results for square tins in as long as the thermal boundary layers from adjacent fins 
Table 1 were obtained analogously. do not overlap. On the basis of Fig. 2, no significant overlap 

The performance of non-isothermal fins may be estimated is expected at fm spacings more than eight times the mean 
by conventional methods, using a value of h, calculated thermal boundary layer thickness, k/h, 

CALCUL ASYMPTOTIQUE DUNE CONVECTION LIBRE DANS DES SYSTEMES 
LAMINAIRES TRIDIMENSIONNELS 

R&sum&-Sont donnees, pour une convection naturelle dans des systtmes laminaires tridimensionnels, 
des solutions de couche limite etablies pour une densid dependant de la temperature ou d&pendant de la 
composition. Des effets de transfert de masse rapide et de forces centrifuges sont dttermin6s et lea resultats 
d’Acrivos (1) pour des fluides a “loi-puissance” sont generali&. Les resultats sont valables asymptotique- 
ment pour des nombres de Prandtl ou de Schmidt elevts 11s sont remarquablement bien confirm&s par 

les mesures anterieures sur des reactions tlectrochimiques limit&s par la diffusion. 

ASYMPTOTISCHE BERECHNUNG DER FREIEN KONVEKTION IN LAMINAREN 
DREIDIMENSIONALEN SYSTEMEN 

Z~mrnenf~~~-~ werden Losungen der Gre~schic~tglei~hung~ angegeben fiir die fmie Konvektion 
in laminaren dreidimensionalen Systemen. Die Konvektion kann durch Temperatur- bzw. Konzentrations- 
abhingigkeit der Dichte hervorgerufen sein. Die Einflilsse von raschem Stofftibergang und von Zentrifugal- 
kmften werden bestimmt, und die Ergebnisse von Acrivos [l] fiir Fluide, die einem Potenzgesetz gehorchen, 
werden verallgemeinert. Die Ergebnisse gelten asymptotisch fiir grosse Prandtl- und Schmidtzahlen; sie 
werden sehr gut bestltigt durch vorangegangene Messungeu an diffusionsbegrenzten elektrochemischen 
Reaktionen. 

~~C~MHTOT~~E~~~~ PACYET CBOEOfiHOH HOHBEKHHH B 
JIAMMHAPHbIX TPEXMEPHbIX CHCTEMAX 

AHHOTaq~~-~p~IBO~~TCR PeIHeHMfl J'paBHeHMti IlOrpaHHqHOFO CJIOH IIpH CBO6OneO# 
KOHBeI~~~llB~~MI?HapH~XTpeXMepHb~XC~CTeM~X,O6~C~OB~eHHOltir~~BIIC~MOCTbK) WIOTHOCTB 
OT TeMnepaTypbI kImI CocTaBa. Onpe~enmTcf3 3QQeKTbI 6bICTpOI'O MacconepeHoca II. UeHTpO- 

6exHMx CW'X. 0606~a~TC~ pe~y~bTaT~ AK~HBOC~ AJiff CTe~eHH~X ~~~KOCTe~. Pe~y~bTaT~ 
aC~M~TOT~~eC~~~ CiIpaBefiJGIB3d HJIlf 6OJIbUIHX 'IKCeJl ~paHETJITI IIJI% &SHATa. OHi4 HeIlOC- 
peJ&CTBeHHO IIOJ&TBep~~aIOTCfi npeAbIEylI(HMH W?MepeHSIXMEI 3JIeKTpOXRMRYeCKi4X peaHUI%it, 

i;OHTpOLWIpyeMbIX ~l4(&'3He~. 


